AGR-3/4 Radial Destructive Exams

John Stempien

AGR TRISO Fuels Program Review Idaho Falls, ID July 18-19, 2017

.dov

Outline

- Compact radial deconsolidation
 - Process flow charts
 - Search for designed-to-fail (DTF) particles
 - Status of radial deconsolidations
- Physical sampling of inner and outer rings
 - Status
 - Schedule

Compact Radial Deconsolidation

- Remove radial portions of the compact in 3 or 4 segments
- Use leach-burn-leach (LBL) process to measure fission product inventory outside of particle SiC layers as a function of radial position in the compact
- Analyze groups of particles from different radial positions in the compact
- Avoid deconsolidating DTF particles until after harvesting 3 or 4 radial segments from the compact
- Compare measured fission product profile with model prediction

X-ray showing 20 DTF particles in center of compact

Radial Deconsolidation Analysis Flow Chart

Analyses on radial segments

Axial Deconsolidation Following Radial Deconsolidation Steps

Traditional axial deconsolidation on compact core remaining from radial deconsolidation

Radial Deconsolidation Analysis Flow Chart

Analyses on compact core from final axial step of deconsolidation

Remaining compact core with DTF particles

Radial portion removed

AGR-3/4 DTF Recovery

- Attempted DTF recovery following trial deconsolidation of unirradiated Compact Z109:
 - Sieve debris collected from axial deconsolidation of core
 - Material from the 850 µm sieve was further process (cleaned, re-sieved, etc.)
 - At no point did any DTF stand-out for harvesting
 - 11 kernels worth of U measured in burn-leach solutions of the 850 µm material
 - Other 9 kernels must be in other sieves (600 and 300 μ m)
- Built sieves to put in hot cell
- Performing additional sieving of un-irradiated particles to determine partitioning of DTF

In-cell Radial Deconsolidation Status

- Completed two trial radial deconsolidations in Cell 5 at Analytical Laboratory (AL)
 - Un-irradiated compact LEUO3-10T-OP2-Z153
 - Matrix blank (matrix graphite only)
- Completed radial deconsolidations on two irradiated compacts in Cell 5 at AL towards Level 3 Milestone "complete radial deconsolidation of two AGR-3/4 compacts"
 - Radial deconsolidation of irradiated Compact 12-3 (1 radial segment and axial)
 - Full radial deconsolidation of irradiated Compact 12-1 (3 radial segments and axial)
 - Analyses in-progress

 Step 1: set up apparatus and camera, accurately measure predeconsolidation compact diameter

• Step 2: using the same lighting/camera setup as in Step 1, acquire video of rotating compact after 15 minutes of radial deconsolidation

 Step 3: using the same lighting/camera setup as in Step 1, acquire video of rotating compact after additional 15 minutes of radial deconsolidation

 Step 4: using the same lighting/camera setup as in Step 1, acquire video of rotating compact after additional 20 minutes of radial deconsolidation

 Step 5: Use axial deconsolidation method to deconsolidate the compact core attached to the rod

First Irradiated Compact 12-3 Radial Deconsolidation

 Step 1: set up camera and lighting, acquire video, compare diameter from image analysis with known diameter from PIE metrology

First Irradiated Compact 12-3 Radial Deconsolidation (video)

• Step 2: lower compact to deconsolidation solution, establish uniform contact with screen electrode, start rotation, turn on electrode power

First Irradiated Compact 12-3 Radial Deconsolidation

- Step 3: Measure compact diameter after first 15 minutes of deconsolidation
- Same amount of material removed from irradiated Compact 12-3 after 15 minutes as from as-fabricated compact Z153 (~0.6 mm)
- Compact inadvertently knocked off rod
- Deconsolidation solution and particle analyses will be completed on material from first 15 minutes

Second Irradiated Compact 12-1 Radial Deconsolidation

- Radial deconsolidation completed 5/15/2017
- Radial deconsolidation performed in three steps, each 16 minutes long
- Axial deconsolidation of compact core completed 5/16/2017

Planned Radial Deconsolidations in 2017

- Complete at least one more radial deconsolidation of the following:
 - Capsule 3 (IR/OR-3 planned for physical sampling):
 - 3-3 primary
 - 3-4
 - Capsule 7 (IR/OR-7 planned for physical sampling):
 - 7-3 primary
 - 7-4
 - Capsule 12:
 - 12-4: use if problems arise during other deconsolidations
- Level 3 Milestone to complete 2 radial deconsolidations of irradiated compacts already fulfilled with compacts 12-3 and 12-1

Safety Testing of AGR-3/4 Compacts

• For FY17:

Compact	Test Temperature (°C)	Irradiation Temperature (°C)	Burnup (% FIMA)	Status
3-2	1600	1196	12.5	Early August
10-2	1200	1213	12.0	Late August

• See PLN-5382 for other planned AGR-3/4 safety tests

Physical Sampling of AGR-3/4 Rings

- Measure radial profile of fission products within select rings
- Use measured profile to calibrate tomographic gamma intensity maps from PGS into quantitative maps and compare with model predictions
- Physical sampling will progressively remove radial segments (width w and thickness t) from rings at one or two axial locations
- Collected material is gamma scanned and burn-leached for Sr-90 analysis

Physical Sampling Equipment Installed at HFEF Window 3M

Phase I, II, and III Qualification Activities were Completed

- Developed method to stabilize rings with epoxy for sampling
- Fabricated custom end-mill bit
 - True flat end
 - Side-cutting
 - Improves uniformity of removed ring material
- Average collection efficiency of 99.5% (varies between 99.1% and 99.8%
- Tested potential for cross-contamination between samples
- Phase III qualifications included:
 - Installation and checks in-cell at HFEF
 - Approved and released laboratory instruction HFEF-LI-0162

Development of Physical Sampling Equipment for AGR-3/4 Rings

Activity	Time Frame	
Receive mill equipment enabling operations independent of existing cell mill	Completed June 2016	
Phase 1 Qualification: assemble and check at North Holmes Laboratory	Completed March 2017	
Collection efficiency testing	Completed April 2017	
Cross-contamination testing	Completed 5/11/17	
Phase 2 qualification at MFC Mockup	Completed 5/8/2017	
Phase 3 qualification	Completed 6/20/2017	
Begin ring sampling	Started 6/21/2017 will continue until finished	
Completed sampling of 3 rings (IR/OR-03 and IR-07) *	Completed 6/29/2017	

- Gamma counting of fines from ring milling at PNNL (select samples to be counted at INL)
- Burn leach and strontium analysis of ring samples to be done at PNNL
- * Level 3 milestone to complete sampling of 4 rings for 6/30/2017 missed due to repeated electrical failures of in-cell equipment. 3 of 4 rings successfully sampled.

Schedule for Physical Sampling of AGR-3/4 Rings

Rings	Projected Sampling Date	PGS Tomography Complete?	
IR/OR-3	June 2017 - COMPLETED	Yes	
IR/OR-7	June 2017 - IR-7 COMPLETED Late July 2017 - OR-7	Yes	
IR/OR-5	July/August 2017	Yes	
IR/OR-8	August 2017	Yes	
IR/OR-4 TBD		IR-04 in progress (OR-4 not suited to tomography)	
IR/OR-10 TBD		OR-10 scheduled to start 8/11/17	

Questions and Discussion

John StempienIdaho National Laboratoryjohn.stempien@inl.gov(208) 526-8410

Physical Sampling Equipment

- Assembled at North Holmes lab at INL
- Some trial operations completed
- Fine-tuning of equipment operation in-progress prior to Phase 1

Physical Sampling Equipment

Epoxy for Filling Rings Prior to Sampling

- EpoHeat[®] not viscous enough and permeated through the entire PCEA ring
- Allows comparison of collected mass with volume indicated by mill equipment
- Permeation not a problem with IG-110

- Masterbond EP21LV works well
 - High viscosity and shorter working life, prevents pore filling/penetration
 - Does not infiltrate PCEA
 - Added white coloring to judge sampling depth during final cut

